
D E C O M P O S I N G T H E M O N O L I T H :
O P T I M I Z AT I O N A N D A U T O M AT I O N

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 2

A B S T R A C T

For the first time, we present a data affinity-driven method for decomposing monolith applications into a collection of

microservices. The decomposition strategy defined by our process, comprises mapping data objects exposed by the

monolith’s API endpoints to an enterprise business capability framework and then clustering the business capabilities

through data object cohesion. Through this, we define an optimized set of service components that embody business

capabilities, but that simultaneously minimizes network latency upon implementation. Using the output from the

clustering method, we’ve developed a strategy that determines where to initiate the decomposition process and how to

move from current to target state progressively.

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 3

A microservices-based architecture enables an enterprise to,

through employing multiple teams that work in parallel, deliver

business value independently of each other and at greater

speeds while collectively avoiding the high cost of ownership

that is associated with a monolith architecture1. With a well-

defined microservices strategy and implementation, you can

remove delivery bottlenecks, and develop scalable and resilient

software in a manner that is highly responsive to changing

business demand, ultimately allowing an organization to

embrace BizDevOps practices.

Strategically planning the monolith decomposition roadmap

plays a critical role in the success or failure of an enterprise’s

microservices strategy since:

• A monolith decomposition journey typically co-occurs

with the development of new business features as well

as the implementation of code patches that address

production incidents on the same IT stack. Thus, a key

consideration is balancing short and long-term stakeholder

expectations regarding the urgency of the transformation

within the organization.

• Poor choices surrounding the compositional granularity

of the new service layer are hard and costly to reverse.

Additionally, it may harm overall system performance

and stability.

• For a microservices strategy to genuinely successful, a

cultural transformation within an organization that spans

well beyond the IT department may often be required2.

• An important point to consider is that defining a

microservices target state is less about the ultimate size

of the codebase, but more focused around the logical

separation of concerns – specifically data.

You can facilitate a successful decomposition journey by

having a target state defined. By doing so, you delineate the

future microservices optimally through encapsulating business

capabilities,3 while at the same time ensuring that the overall

component composition is not so fine-grained that system

performance will suffer when the service layer experiences high

demand4. This optimized target state will also provide insight

as to where to initiate the journey (typically smaller services that

have minimal coupling to the rest of the monolith) and how to

strangle the monolith systematically.

Our method consists of several techniques that collectively help

define this optimal target state and, in the process, identify

those features that can easily be decoupled by focusing on

data. These techniques are discussed in sections three through

six. Furthermore, outputs from employing the technique provide

additional benefits to the enterprise that we will discuss in

section seven.

1 . I N T R O D U C T I O N

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 4

Decomposing a monolith can seldomly be done without

underlying code features being enhanced or repaired at the

same time. In practice, this often excludes a big bang approach

to decomposition, and key then is how to systematically distill

and release features from the monolith in such a way that

business-as-usual project and maintenance work are not

adversely affected.

You can attain this by abstracting what the enterprise does in

a granular, atomic manner using business-friendly language.

In practice, this can be achieved by defining a set of business

capabilities and then mapping the monolith against the resultant

set. By then defining an orderly manner through which you

can release these business capabilities, one by association also

defined the decomposition path for the monolith. However, the

key to the end-to-end undertaking is also understanding the

cohesion/lack of cohesion among the business functions as this

knowledge will help one avoid making the service stack

too granular.

Furthermore, you may describe a long-running workflow (such

as selling a product/service to a new client) through a collection

of business capabilities being triggered in sequence and/or

parallel. Such a workflow thus represents a vehicle through

which you can realize several business capabilities collectively

to achieve a larger goal. In a technical implementation, a

workflow orchestration engine can embody this business

process workflow by executing microservices that each, in turn,

aligns directly to a business capability. The approach thus helps

align Product with IT more closely.

A collection of business capabilities that are structured logically

in a hierarchy form a business taxonomy. Industry-standard

business taxonomy frameworks do exist, such as the business

process framework (eTOM) for the telecommunications industry,

and the banking industry architecture network (BIAN).

When applying our method, an enterprise may choose to adopt

such an industry framework, implement a derivation of one, or

created a business taxonomy from first principles.

In the latter case, the taxonomy could potentially be defined

through internal consultation and will most likely comprise of

a functional view of the organization:

Sales | Contracting | Sign Contract,

Billing | Bill Calc | Calculate Taxes, etc.

Alternatively, the taxonomy may arise organically (bottom-up

approach) by evaluating and abstracting details captured in

existing technical models that describe the organization’s

business and IT processes (business modeling process

flows, sequence diagrams, use cases, etc.). This bottom-

up approach holds several advantages over predefining

the functional taxonomy. These advantages include speed

of analysis (significantly less time is needed for consulting

activities), and avoiding the creation of artificial functional silos

(with the corresponding duplication of data and associated

synchronization related concerns). However, the process

demands enterprise maturity in documenting their business

and IT processes.

Cardinal to the custom approach, is that the taxonomy should

ensure close alignment with key business concepts and

language used within the enterprise to align business and IT

better. Moreover, each business capability:

• Should be atomic – i.e., it provides a small, repeatable

business-centric outcome.

• Is it usable across many different workflows? Workflows

employ one or more capabilities to execute a long-running

process, and typically provide more significant business

value (such as customer onboarding).

2 . T H E B E N E F I T S O F B A S I N G T H E M I C R O S E R V I C E S
D E C O M P O S I T I O N S T R AT E G Y O N A B U S I N E S S TA X O N O M Y

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 5

• Optionally creates, modifies, or references data as part

of the atomic task that it performs. Note that the data it

creates, modifies, or references may potentially be owned

by a different business capability.

Also note that while business capabilities are atomic and

independent, they share an indirect connection through

common data objects. A data object represents data at a macro

or business level (i.e., the collective concept of the customer’s

billing address as opposed to the customer billing address

postal code.). A data object may be conceptually viewed as a

data clustering or hierarchy, which is distinct from the business

capability hierarchy. Data objects may be shared among

several services. As a simple example, a customer’s address

can be used by a CRM related service to capture the underlying

information. Later, a tax calculation service could use that

information to determine appropriate taxation based on location.

Lastly, an invoice generation service could use the information

to decide which address the customer invoice will be sent.

Data objects play a cardinal role in determining how to cluster

business capabilities into an optimized services stack.

As a simple example, consider a business capability taxonomy

that has distinct entities for creating a contract with the

customer, having the customer sign the contract, and having

the organization countersign the same contract. One could

theoretically create a microservices target state where each of

these three atomic capabilities aligns directly with a dedicated

microservice. However, the better solution may be to cluster the

three capabilities into a single microservice simply because they

will all use the same data objects to achieve their respective

outcomes. By using the single microservice approach, you still

preserve the concept of business to IT transparency. Still, you

will reduce overall network traffic will during implementation

as the three functions will, for the most part, feed off data

stored in their common service database, as opposed to

needing to query across services. It also helps resolve the

issue of data ownership, i.e., to which service does the physical

implementation of the client contract data object belong to.

As a final note to the question of the granularity that business

capabilities should be defined when defining a custom

taxonomy. For monolith decomposition, the choices made are

tolerant to under/oversizing. This is because:

• Capabilities that were defined too granular will eventually

cluster together, as will be discussed in section 4.

• Capabilities that were defined at a level that is not

granular enough will ultimately reveal themselves as being

associated with too many data objects (using the method

that we describe in section 3). In these cases, you should

decompose the business capability into two or more

capabilities of greater atomicity.

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 6

As we previously mentioned, the method we describe requires

knowledge of the association between data objects and

business capabilities. Because a microservice essentially

is a combination of business functions, data needed by the

functions, and API endpoints through which the functions can

be executed and/or create, retrieve, update and delete (CRUD)

operations on the data may be performed.

As a proof-of-concept, a subset of customer journeys,

collectively forming a new initiative for one of our clients, was

used to define a custom taxonomy from first principles as part

of a pilot project. The taxonomy was defined and refined along

with seven key activities:

1. Identifying all the long-running workflows by

analyzing business process models as well as app

(Android/iOS) screen flow mock-ups and business-level

requirements for the initiative. The resultant dataset became

the primary dimension of the taxonomy analysis.

2. Defining business capabilities referenced inside the

business process models and app screen flows by

analyzing activities and generating abstractions.

For example, a set of activities inside a logic branch in a

Business Process Model (BPM) may pertain to obtaining

user personal information, and others may pertain to

obtaining a client’s account balance. These abstractions,

when defined granular and atomic as described previously,

are the business capabilities, and form the secondary

dimension of the taxonomy analysis. Note that business

capabilities are conceptually usable across several different

workflows. As an example, the business capability “lookup

account balance” is shared among “make an investment”

and “transfer money to a different account” workflows, even

though the actual underlying implementation of the business

capability may potentially be different among the workflows.

3. Cross-mapping the workflows that were identified to

the business capabilities that were defined to lock

down the main taxonomy structure. This step plots the

correlation between the primary and secondary dimensions

referenced above (points one and two) and becomes the

platform through which you perform the rest of the analysis.

A conceptual and partial example of this is shown in figure

3 . M A P P I N G M O N O L I T H B U S I N E S S
C A P A B I L I T I E S T O D ATA O B J E C T S

Figure one. Partial cross-map of workflows to business capabilities (note that some data has been masked).

WORKFLOWS | BUSINESS CAPABILITIES Upload Proof
of Residence … Send

Notification
Obtain Account

Balance

Account Management

…

…

Change Mobile Device

…

…

…

…

Reset Password

…

…

…

…

Onboard Customer to Digital Platform

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 7

one based on work done for the pilot project. Note that the

collection of activated business capabilities for any given

workflow fully covers all aspects of that workflow, but that no

sequence of business capability invocation is implied.

4. Aligning client app screens to the business

capabilities for each workflow as part of an IT enabler

deep dive. For our pilot, we had access to approximately

200 app screen mock-ups and associated logical flows.

Each app screen mock-up was cross-referenced to the

appropriate workflow/business capability cluster.

5. Identifying and mapping which API endpoints are

invoked for each app screen. In addition to business

process models and app screen mock-ups and flows,

we also had access to Unified Modeling Language (UML)

sequence diagrams that describe the detailed execution

of core aspects of the workflows. This allowed us to

correlate app screens to API endpoints, and then to use

this association to cross-reference the API endpoints to

the taxonomy.

6. Extracting data objects from each referenced API

endpoint by analyzing its specification. For our pilot,

this exercise was relatively trivial as all the APIs are RESTful,

and each endpoint references a single data object. This

may not always be the case: In practice, APIs may contain

hundreds of data elements that may roll up to several data

objects. In these instances, we recommend that automation

around extracting data objects from the API specifications or

underlying code is embraced.

7. Once the data objects were extracted from the API

endpoints, they were cross-mapped to the taxonomy

through inference to the API endpoints that had

already been mapped (see step six). At this stage, a

new view of the taxonomy can be generated by illustrating

the correlation between business capabilities and data

objects. This is depicted in figure two for a partial subset of

data derived as part of the pilot project. As can be seen in

Fig. 2, each business capability references one or more data

objects. The collection of data objects that are associated

with any given business capability is then that capability’s

data object thumbprint.

There is a good strategy for if any business capability appears

to be overloaded with data objects, and if (and only if) these

data objects are not pushed to the function. The strategy

features re-evaluating the capability to determine whether you

can split it into two or more capabilities of greater granularity

since comparing the capability as is with any other capability

will probably result in low cohesion results. To illustrate this,

note that the ‘Send Notification’ capability in figure two is

associated with several data objects. However, the majority

of data objects, such as account and device, are pushed to

the function (the function does not pull the data as part of

sending notifications), and hence there is no need to split

the function. However, had this data been pulled by the

‘Send Notification’ function, we would likely have split the

capability into more atomic functions before continuing with

the remainder of the analysis.

Now that we’ve defined the business capabilities, and each

has been associated with one or more data objects, the next

analytical step is to cluster the capabilities through their mutual

data affinity.

DATA OBJECT | BUSINESS CAPABILITIES Upload Proof
of Residence … Send

Notification
Obtain Account

Balance

Client

…

Account

Mobile Device

…

…

…

Figure two. Partial cross-map of data objects to business capabilities (Note that some of the data had been masked)

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 8

Figure three. Vectorization of Data Objects by Business Capability. A value of 1 in the vector representation
represents the fact that a business capability references a particular data object (such as account). In contrast,

a value of 0 denotes that that capability does not reference that data object.

Figure four. Cosine similarity formula where A and B represent two vectors4. Within the context of this discussion,
A and B thus represents the data object composition (thumbprint) of any two business capabilities in the taxonomy we defined.

Two clustering methods were independently used to group the

business functions based on data affinity: cosine similarity

analysis, and k-means. The results from the two methods were

compared, and a recommendation is made around the most

appropriate technique for this particular problem domain.

4.1 Cosine Similarity
When using cosine similarity measurements, the cohesion

among the various business capabilities can then be expressed

as numbers with values residing between 0 and 1. This allows

one to define (or, if needed, redefine) a threshold value which

will drive the granularity and relative size of the clusters.

In practice, the collection of data objects that had been

associated with each business capability is vectorized using

a one-hot encoding approach, and a cosine similarity value

is then calculated to determine the cohesion, or lack thereof,

among the entire set of capabilities. Figure three conceptually

illustrates how the data objects are vectorized for each business

capability using one-hot encoding.

Note that the cosine similarity formula (see figure four) uses

the dot product between, and magnitude of, the two vectors

in question, and neither will be affected by the specific ordering

of the dimensions that represent a data object in the set

of vectors.

4 . O P T I M I Z I N G T H E S E R V I C E S TA C K
T H R O U G H C L U S T E R I N G T E C H N I Q U E S

Business capabilities Data object vector

Business capability 1 1 0 1 … 1

Business capability 2 0 1 1 … 0

Business capability 3 1 0 0 … 1

… … … … … …

Business capability n 0 1 0 … 0

A. B

︲ ︲ A ︲ ︲ ︲ ︲ B ︲ ︲

n�
i=1 A i B i

n 2�
i=1 B i

n 2�
i=1 A i

similarity = cos θ = =

µS 1 µS 2 …µS 3

C 1 BC 2 … …C 3

BC 1 BC 2 …BC 3BC qBC 3 BC n …BC w

C 2

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 9

Calculating the cosine similarity among all business capabilities

will yield a matrix, as is shown in figure five.

In the matrix, values closer to 1 show a relatively high

cohesion between the two business capabilities, and these

are candidates for clustering together. Examples in figure

five, illustrated with the circles in the matrix, include business

capabilities one and three, as well as business capabilities two

and n.

Conversely, values closer to 0 show little cohesion between two

business capabilities, and they should logically not be clustered.

Moreover, a business capability that has low cohesion to all

other capabilities, as is the case for business capability (n-1) in

figure five, can be completely isolated. These capabilities are

excellent candidates for starting the microservices journey.

As part of this method, a cohesion threshold value should be

chosen where cosine similarity values are greater than the

threshold drives when business capabilities should be clustered.

Depending on this threshold choice, clusters will logically be

larger or smaller, but regardless, these clusters define target

state microservice candidates.

Alternatively, the clustering process could be repeated

recursively until all cosine similarity measurements among

clusters have relatively low values and that no new clusters

can logically be formed. Each supercluster that is derived

through this process will be a target state microservice. This

is illustrated in figure six that shows how each microservice

candidate, through tracing to the hierarchy, is still directly

aligned with a business capability.

Ultimately, our method provides for an optimized set of services

that encapsulate granular business functions as best practice

but are balanced at the same time by defining a minimal set

of physical components in the services stack, which will help

ensure improved network latency.

Figure five. Business capability similarity matrix.

Taxonomy BC 1 BC 2 BC 3 … BC n-1 BC n

BC 1 1 0.5 0.95 … 0 0.65

BC 2 - 1 0.35 … 0.01 0.90

BC 3 - - 1 … 0.025 0.40

… - - - 1 0.03 0.33

BC n-1 - - - - 1 0.02

BC n - - - - - 1

Shows high cohesion and hence capabilities that
may be clustered. Clusters become candidate µSs.

A capability that is highly isolated and can as a result
easily be lifted out of the monolith as a stand-alone µS.

Figure six. Visualization of a target state microservice architecture that is derived through recursive clustering.

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 0

4.2 K-Means Clustering
Complementary to the Cosine analysis, the business capabilities

were also clustered using the k-means method. Here, the

same one-hot encoding values were used to represent the data

object thumbprints for each of the business functions. A simple

Python script was used to execute the algorithm, selecting

the same number of output clusters as what cosine similarity

analysis naturally revealed.

The clusters that resulted from executing the k-means script

had approximately 75 percent direct correlation with that of

the Cosine Similarity analysis. The main concern with using

k-means as opposed to cosine similarity, (which requires more

manual work) is that the algorithm has no context about the

business capabilities themselves. So when clustering, it would,

in some cases, lump business capabilities together that ideally

should functionally be separated as they represent very different

business domains. Accounting for most of the deltas between

the two clustering methods. Note that k-means is known to

have trouble clustering data where clusters are of varying sizes

and density6, which is certainly the case in this dataset.

As a result, while k-means certainly could be used to create

a first approximation of the clusters, the cosine similarity

approach allowed for greater control, and hence a more

contextually relevant grouping of business capabilities, at the

cost of more human involvement.

4.3 Data Ownership
After clustering, there may be cases where data ownership

needs to be resolved as it will often be unavoidable that a

subset of target microservice will need to operate on the same

data object(s). This is illustrated in figure seven, where the data

object composition has been rolled up to a microservices view.

For example, in figure seven, microservices one and two have a

shared need for access to data object 3.

In these instances, a set of rules are defined to determine which

microservice will own the data tables and API layer that provides

access to the data underlying the common data object. These

are, in order of importance:

1. Whether the business capability pulls the data or whether

it is pushed towards it (such as in a notification service).

When data is pushed towards it in the legacy system, the

associated microservice will logically not be a candidate

for ownership

2. Which function updates the data object more frequently

3. Which function consults the data object more frequently

Figure seven. Some data objects may be required by more than one microservice.

Data Object 1 Data Object 2 Data Object 3 … Data Object n

µS 1

µS 2

µS 3

… … … … … …

µS y … … … … …

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 1

TABLE 1
The partial result from clustering and data assignment analysis for the project

on which we piloted the decomposition approach.

Putting this in practice, Table 1 shows a partial result from the project on which we piloted the method.

The type of view that is illustrated in Table 1 now helps define a decomposition roadmap.

Microservice
Contains Business
Capabilities

Data Objects
OWNED

Data Objects
OWNED

Decomposition
Priority

Consumes

CustomerService Onboard Customer
Change Profile
…

Client Device … Account 4 AccountService
InformationService

AccountService Obtain Account
Balance Transfer …

Account Credit … Client … 3 CustomerService
NotificationService

NotificationService Send Notification
Cancel Notification …

Notification Device Client 1 None

InformationService …
…

…
…

…
…

2 None

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 2

5 . C R E AT I N G A D E C O M P O S I T I O N R O A D M A P

With the clustering exercise completed, a roadmap can be

defined whereby clusters that can be decoupled from the

monolith readily (due to low cohesion to any other clusters) are

prioritized. This approach will also provide development teams

the opportunity to validate and fine-tune development, testing

and deployment strategies and best practices. All of which

ensures the infrastructure serves the stated need (including

potential data synchronization with the monolith legacy

database), that non-functional requirements (performance and

security) are satisfied, and that business-as-usual delivery of

new business features are not impacted negatively.

Once delivery execution has matured for the first handful of

microservices, a decomposition release train for the other

services can be established. To construct the path of execution,

we recommend decomposing, as far as possible, around those

functional clusters in the business taxonomy where work intake

will already occur for a given sprint. For example, if taxation

rules need to change as part of the prioritized backlog for

a given sprint, the corresponding business capabilities that

roll up to the microservice that align to this should ideally be

targeted for decomposition around the same time. In this way,

stability around the rest of the IT ecosystem can be assured

while optimizing the use of development, test, and project

management resources.

Figure Eight. The recommended decomposition strategy spread across three sprints.

Sp
rin

t(n
-1

)

Client(s)

M

 μ Rules

Minimal refactoring

Sp
rin

t n

Client(s)

M

 Rulesμ

Sp
rin

t(n
+

1)

Client(s)

M

 workflow

 Rulesμ

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 3

An implementation strategy for this recommendation is as

follows (assuming functional work will occur on a business

capability cluster in sprint n - see figure eight for reference):

• Lift-and-shift the existing monolith code that corresponds

to the targeted (clustered) business functions during the

sprint (n-1) and regression test over this period. The

code reorganization includes moving corresponding data

structures, data synchronization with the legacy database,

API endpoint locations, etc. Note that the API endpoint

and data structure definitions should remain unchanged to

ensure the stability of the greater code base, but that minor

refactoring may occur (such as moving business rules to a

dedicated rules-engine or to resolve technical debt). The

new code base also needs to adhere to non-functional

specifications that were established for microservices within

the enterprise. This includes security, logging, availability,

performance-related SLAs, etc., as well as to other

enterprise architecture related mandates.

 At this stage, the monolith will still contain the original

function call signatures (to ensure that the consumers are

not impacted). Still, it will forward such calls to the new

microservice and return the results to the calling consumer.

Moreover, all internal monolith calls that accessed the

original set of CRUD related API endpoints need to be

refreshed to point to the new location/version.

• During sprint n, new business features (based on functional

work intake) are added to the microservice. APIs and Data

structures of the microservice may change to accommodate

the new/changed features. Signatures in the monolith’s

forwarding calls, as well as the monolith data structures,

may need to be updated as a result. Consequently,

consumers calling into the monolith may need to update

their codebase to account for such changes.

 Additionally, appropriate workflows will be added to the

orchestration service layer (assuming an orchestration

approach is followed). Still, it will not yet be wired up to

the monolith and microservices collection for general

consumption (but may be tested as part of a controlled

introduction deployment strategy).

• During sprint (n+1), client calls will be routed to the

orchestration service for general consumption, and

comprehensive regression testing will be conducted.

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 4

6 . M A N A G I N G N E W B U S I N E S S F U N C T I O N A L I T Y

After the microservices initiative is complete, or even while it

is in flight, it is expected that new business features will need

IT enablement as part of standard IT project work. The question

is whether such new features should be added as new services

in the microservices stack or whether existing services should

be extended.

The same clustering method that was used for slicing the

monolith, can now be reused to help with these decisions via

knowledge of the data object thumbprint for each microservice.

This implies that data object thumbprint information should be

maintained for the collection of microservices.

The new business feature is then analyzed in terms of its

own data object needs, and its data object thumbprint is

subsequently determined. Using the exact same method as

was described in section 4.1, the affinity between the new

business feature and the existing microservices are determined.

Based on the findings, either a new service is proposed, or

one or more of the existing microservices are extended to

encapsulate the new feature.

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 5

As well as defining a monolith decomposition strategy, there are several other benefits in employing a business capability taxonomy

in an enterprise. Some of these benefits can help the enterprise on its journey towards establishing BizDevOps practices, others can

provide strategic insight for optimizing operational improvement initiatives. A few examples are listed below in Table 2.

7. O T H E R B E N E F I T S O F M A P P I N G T H E B U S I N E S S
TA X O N O M Y T O T H E M I C R O S E R V I C E S S TA C K

TABLE 2
Short and long-term benefits of employing a business capability taxonomy

Realization Benefit

Short Term • It helps with scrum teams functional collision detection early in the software development lifecycle. By

mapping work intake to business capabilities for each project/scrum team, an early readout can be

obtained about inter-team dependencies, which, in turn, allows for more effective project management and

potentially avoiding complex code merge issues by ensuring the work execution occurs in different sprints.

• Helps architects systematically analyze which IT components are impacted, i.e., which monolith classes

and/or microservices will need to be changed based on new work intake. Furthermore, when a specific

business capability is determined to be impacted, the data objects associated with this capability are

analyzed for structural impact (example, street name field length needs to be increased from 30 to 50

characters). The knowledge thereof drives secondary business capability impact analysis as data objects

are often shared among business capabilities.

• Helps test analysis systematically where new work extends existing features. This can significantly facilitate

regression test analysis if the additional effort is taken to map the taxonomy to test cases.

Medium/Long Term • Helps mapping of enterprise project issues, test defects and production tickets to the business capability

framework and quantitatively highlight where process optimization will yield the best ROI. Assuming a

defect can be traced to a microservice or API endpoint, for example, following the breadcrumb trail will lead

to an impacted business capability. Through analysis of many defects and incidents, patterns will emerge

that can provide an enterprise with data-driven insight around which business capabilities are the most

troubled. Following the Pareto 80/20 rule, that small subset of business capabilities that collectively cause

the most harm to the enterprise can consequently be isolated and analyzed for areas of improvement and

re-engineering.

• Predictive models via cognitive automation: Historical data around specific inputs and associated outcomes

can be mapped to the business capability framework and used to train cognitive models that in turn can,

via mapping of new work intake to the same taxonomy, be used to predict outcomes (e.g., whether the

project will result in budget overruns, etc.).

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 6

8 . E V O LV I N G T H E M E T H O D

While the method yielded very satisfactory results for the pilot

that was conducted, two areas were identified that would

require further thought and analysis to accelerate its adoption

as a standard practice. These are:

• Mining information needed to build the taxonomy: For

the pilot, we had a very well documented business process

models, App screen flows, UML Sequence Diagrams, and API

specifications at our disposal – there was little to do in terms

of mining the information, and the details were sufficient

to construct the business taxonomy largely independently.

This will not always be the case as one may be in a situation

where the legacy system(s) were created 2 or 3 decades

ago, and documentation is outdated or missing, and/or

subject matter experts left the enterprise. In a scenario

such as this, it would be helpful to have a tool that can

automatically / semi-automatically mine the information

needed to build out the taxonomy by scanning the underlying

legacy codebase.

• Automation in extracting data objects from API

Specifications and/or code: In our pilot, APIs were

RESTful, and well documented. Moreover, we only had

approximately 50 API endpoints to analyze. As a result,

extracting data objects was a trivial exercise for the pilot.

However, in the case where there may be thousands of

poorly documented APIs and where multiple data objects

may be transported through the endpoints, human labor will

be an inefficient way of extracting the required information.

Automation, possibly through applying machine learning

techniques, may be highly valuable to reduce the amount of

labor needed to perform this critical task accurately.

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 7

An optimized decomposition strategy of a monolith to a

collection of microservices, can be derived through the adoption

of an appropriate business taxonomy, the alignment thereof to

legacy IT constructs, and clustering business capabilities in the

taxonomy by means of data object affinity.

The approach outlined here is not only a once-off exercise.

As the enterprise business evolves its products and services

over time, and expresses this evolution via IT enhancements,

the exact same technique can be used to package new

functions and data in appropriate service containers – i.e.,

the method will recommend whether such IT functions and

data belong in new microservices or whether one or more

of the existing services should be enhanced. This way,

a consistent, repeatable, and measurable approach to IT

evolution, and that has good alignment with the product, can

be established and maintained.

Moreover, while the approach described was focused on

decomposing a single monolith, the approach outlined is equally

valid for a distributed IT environment with several monolithic

applications. Specifically, secondary and tertiary monolith

applications’ decomposition components can be compared to

the microservices that were derived from decomposing the first

monolith using the same approach. In this way, duplication

of business features and data can be avoided by making

enhancements to established microservices where there are

areas of functionality overlap.

Key to the analysis is selecting or defining a business taxonomy

that has the appropriate level of granularity. Moreover, the

business functional taxonomy becomes a cornerstone against

which many other IT related activities can be performed,

including requirements and architectural analysis, regression

testing needs, as well for providing as deep data driven insight

into an enterprise’s most troubled operations.

9 . C O N C L U S I O N S

D E C O M P O S I N G T H E M O N O L I T H : O P T I M I Z AT I O N A N D A U T O M AT I O N / 1 8

1. Fachat, André. Challenges and benefits of the microservice architectural style, Part 1, 2019, Web Page: https://developer.

ibm.com/technologies/microservices/articles/challenges-and-benefits-of-the-microservice-architectural-style-part-1/

2. Kozłowski, Albert. How Microservices Architecture Impacted the Culture of Software Development, 2019,

Web Page: https://medium.com/better-programming/how-microservices-architecture-impacted-the-culture-of-software-

development-6bba363ecdf1

3. Lewis, James. Microservices, a definition of this new architectural term, 2014,

Web Page: https://martinfowler.com/articles/microservices.html

4. Laskowski, Dave. Moving to Microservices: How Granular Should My Services Be?, 2019,

Web Page: https://tcblog.protiviti.com/2019/09/04/moving-to-microservices-how-granular-should-my-services-be/

5. Prabhakaran, Selva. Cosine Similarity – Understanding the math and how it works (with python codes), 2018,

Web Page: https://www.machinelearningplus.com/nlp/cosine-similarity/

6. Yordan P. Raykov, et al. What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm, 2016,

Web Page: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162259

W O R K S C I T E D

https://developer.ibm.com/technologies/microservices/articles/challenges-and-benefits-of-the-microservice-architectural-style-part-1/
https://developer.ibm.com/technologies/microservices/articles/challenges-and-benefits-of-the-microservice-architectural-style-part-1/
https://medium.com/better-programming/how-microservices-architecture-impacted-the-culture-of-software-development-6bba363ecdf1
https://medium.com/better-programming/how-microservices-architecture-impacted-the-culture-of-software-development-6bba363ecdf1
https://martinfowler.com/articles/microservices.html
https://tcblog.protiviti.com/2019/09/04/moving-to-microservices-how-granular-should-my-services-be/
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162259

JN_2026

AUTHOR
Gerhardt Scriven, Principal Consultant

CONTACTS
Luciano Sobral, Executive Director

Luciano.Sobral@capco.com

Alex Corsi, Partner

Alessandro.Corsi@capco.com

CONTRIBUTORS
Renato Pedroso, Principal Consultant

Christian Roberts, Managing Principal

Ali Salamati, Senior Consultant

Paul Henry, Consultant

Alvaro Silva, Principal Consultant

Felipe Vinturini, Principal Consultant

Julio Lima, Principal Consultant

Ricardo Schuette, Principal Consultant

Carlos Dutra, Principal Consultant

ABOUT CAPCO
Capco is a global technology and management consultancy dedicated to the financial services

industry. Our professionals combine innovative thinking with unrivalled industry knowledge to

offer our clients consulting expertise, complex technology and package integration, transformation

delivery, and managed services, to move their organizations forward.

Through our collaborative and efficient approach, we help our clients successfully innovate,

increase revenue, manage risk and regulatory change, reduce costs, and enhance controls. We

specialize primarily in banking, capital markets, wealth and asset management and insurance.

We also have an energy consulting practice in the US. We serve our clients from offices in leading

financial centers across the Americas, Europe, and Asia Pacific.

To learn more, visit our web site at www.capco.com, or follow us on Twitter, Facebook, YouTube,

LinkedIn and Instagram.

© 2020 The Capital Markets Company (UK) Limited. All rights reserved.

WORLDWIDE OFFICES
APAC
Bangalore
Bangkok
Hong Kong
Kuala Lumpur
Pune
Singapore

EUROPE
Bratislava
Brussels
Dusseldorf
Edinburgh
Frankfurt
Geneva
London
Paris
Vienna
Warsaw
Zurich

NORTH AMERICA
Charlotte
Chicago
Dallas
Houston
New York
Orlando
Toronto
Tysons Corner
Washington, DC

SOUTH AMERICA
São Paulo

WWW.CAPCO.COM

mailto:Luciano.Sobral%40capco.com?subject=
mailto:Alessandro.Corsi%40capco.com%0D?subject=
https://www.instagram.com/capco_global/
https://www.linkedin.com/company/capco
https://www.twitter.com/capco
https://www.youtube.com/capco_global
https://www.facebook.com/capcoglobal
http://www.capco.com
http://www.capco.com

