
A U T O M AT E D W O R K F O R E C A S T S W H E N
U S I N G T H E A G I L E P O D A P P R O A C H

A U T O M AT E D W O R K F O R E C A S T S W H E N U S I N G T H E A G I L E P O D A P P R O A C H / 2

A B S T R A C T

Agile pods are small, custom agile teams that provide

an effective way to manage engagements where

backlog items vary in the type/scope of work and that

potentially require different skillsets from one another. A

key challenge of using this approach is creating realistic

forecasts of when development of individual backlog

items is bound to commence and finalize (deliver) so

customer expectations can be set realistically. In this

paper, we address this challenge by presenting a method

that automatically assigns pods to sprints so resource

utilization is maximized.

The method also automatically generates a Gantt chart

as output that can be used to help adjust the overall team

size and structure and/or reprioritize the backlog to ensure

the work is being managed as efficiently as possible.

Moreover, we developed an MVP implementation of this

method and a link to the source code is provided. Finally,

we discuss two potential extensions of the model. The first

pertains to the auto-prioritization of the backlog given a

fixed team so the execution time is minimized. The second

extension pertains to defining an optimal team structure to

work through a pre-prioritized backlog that has hard limits

on the execution time.

I N T R O D U C T I O N

What is an Agile pod

Agile pods are small, custom agile teams, where each pod is

responsible for a single task, requirement, or part of the backlog.

Each agile pod can be of whatever size is needed for the task at

hand, whether it’s a small pod to define a solution, or a larger one

to build upon the initial groundwork of the smaller pod.1

Pod members have skill sets and experience levels that

complement each other and that are deliberately matched to best

meet the need of the current backlog item they are assigned to.

When the current pod assignment is completed, the pod disbands

and members are assigned to (a) different pod(s), based on the

next set of prioritized backlog items.

The type of engagements where pods are highly effective in

is where the backlog consists of items that vary significantly

in complexity, skills needed, time pressure, and sometimes in

the nature of the work itself (for example, compare executing a

cloud vendor recommendation study vs. conducting a proof-of-

concept related to adopting serverless technology). As a practical

example, consider a backlog that is comprised of 20+ diverse

items, and a shared pool consisting of 15 resources, made up

1. Attacking the Two Pizza Problem: Agile Pods, Alexander Gladshtein, 2019, Attacking the Two Pizza Problem: Agile Pods | LinkedIn

https://www.linkedin.com/pulse/attacking-two-pizza-problem-agile-pods-alexander-gladshtein/

A U T O M AT E D W O R K F O R E C A S T S W H E N U S I N G T H E A G I L E P O D A P P R O A C H / 3

of architects, business analysts, engineers, and testers. It will be

the mandate of this shared resource pool to collectively work its

way through the backlog of items in the most efficient manner

possible for the duration of the assignment. Logically, during the

time of the engagement, additional items may be added to the

backlog, or item prioritization may change. Indeed, over time,

even the composition of the shared resource pool may vary,

i.e., restructuring the team to better meet demand within time

boundaries.

Pods differs from scrum in that:2

• Pods are designed by external people based on the needs to

fulfill the requirements. Scrum teams self-organize from the

ground up.

• Pods change as needed per the requirements and skillset.

Scrum teams are cross-functional and long-lived.

Benefits of the Agile pod approach

Following a pod approach for scenarios, such as the one described

above, holds several advantages over traditional scrum teams for

the following reasons:3

• Improved project delivery times since the pod had specifically

been optimized for the task at hand,

• Better quality – each pod stays focused on achieving its

goals,

• Cross functional awareness: Due to the continuous stand-up

and tear-down nature of agile pods, team members develop

a greater appreciation of how different roles interact with

each other and an understanding of other mindsets and

perspectives within the team.

Problem Statement

Since pods are comprised of roles to best meet the specific

demands of each backlog item, the number of pods actively

working backlog items will logically vary from iteration to iteration.

A question that arises is whether any techniques exist to manage

prioritization among pods for teams with multiple product owners,

especially if specific talent is in short supply [1]. Linked to this: A

product owner may want to know approximately when any given

item in the backlog will be worked on to set realistic expectations

and manage interlocks with any other work that is dependent on

the outcomes of this item.

To help answer these questions, we developed a model and

technique that quantifies backlog forecasting through automation,

which will be the focus for the remainder of this paper. We will first

present a simplified version of the model to establish the basic

premise, and then add additional complexity to it to better fit the

realities of actual agile pod engagements. We also created an

implementation of the simplified model. The source code for this

implementation can be found at the following repository

https://github.com/diegosarai/gantt-generator.

2. Agile Pods vs Scrum Teams, Curtis Slough, 2019, Agile Pods vs Scrum Teams | Scrum.org

3. Advantages of Working with Agile Pod Teams, Agile Pod Delivery Model | Advantages of Using Agile Pods | FDM Group | UK

https://github.com/diegosarai/gantt-generator
https://www.scrum.org/forum/scrum-forum/34717/agile-pods-vs-scrum-teams
https://www.fdmgroup.com/advantages-of-working-with-agile-pod-teams/#:~:text=Cross%20functional%20awareness%3A%20Agile%20Pod,and%20perspectives%20within%20the%20team.

A U T O M AT E D W O R K F O R E C A S T S W H E N U S I N G T H E A G I L E P O D A P P R O A C H / 4

S O L U T I O N

Basic Approach

We designed and built a Java application (using Java FX) that

iterates over several sprints through a prioritized backlog that has

pre-defined, for each backlog item:

• The pod structure. I.e., the desired role count for addressing

the specific backlog item (example: four quality assurance

(QA), three data architects, four solution architects and 50%

of time from a software engineer).

• The estimated number of sprints required to complete the

specific backlog item (considering the pod resource breakout).

When running the analysis, the total project resource pool

composition is a starting point. This is illustrated in Fig. 1.

Fig. 2 shows an illustration of the prioritized backlog together with

an estimate on the pod role breakout and the estimated duration

of the backlog item.

As inputs into the form shown in Fig 2: Backlog items are

registered in order of priority in “Backlog Items.” Columns “QA,”

“Data Architect,” “Software Engineer,” and “Solution Architect”

denote the anticipated resource demands for each backlog item

(i.e., the pod structure). Fractions of resources are allowed.

Column “Effort” holds the anticipated effort associated with each

item, measured in sprints for the sake of simplicity.

As outputs from the form shown in Fig 2: Column “Start” displays

the actual starting sprint for each backlog item, and this field will

be generated automatically considering the best start date using

the employee’s resource pool. The final sprint for each backlog

item will be also calculated for each item (column “Stop”) and is

calculated from the data in columns “Start” and “Effort.”

Also note this data is based on the best available estimates at

that moment and can be adjusted at any time as more accurate

information becomes available. After each update to the core

data, the forecast can simply be executed again.

Fig. 1: Pool definition: The number of employees for each role in the project is

registered. Pods will be constructed from this pool. Note that only four roles are

considered in this example, but logically this can be extended to cater for more

complex role compositions.

Fig 2. The application table that shows the Pod resource breakout and time (effort)

required to complete each backlog item.

A U T O M AT E D W O R K F O R E C A S T S W H E N U S I N G T H E A G I L E P O D A P P R O A C H / 5

When the “Execute” button is hit, our solution attempts to assign pods in order of backlog priority, considering the match between the

backlog item resource needs and resource role availability in the pool at that moment, and for a duration that is based on the number

of sprints logged against the backlog item (“Effort”). As each sprint passes, the algorithm evaluates whether any items are scheduled to

complete, and that will result in the pod handing its resources back to the pool. Such resources are logically then made available to other

backlog items. Fig. 3 illustrates the solution logic in greater detail.

When the application completes execution, the recommended

start and stop sprints are loaded to a Gantt chart, as is shown in

Fig 4. This readout provides a view of the total duration needed to

work through the backlog end-to-end and can help qualitatively

identify bottlenecks in some of the backlog items.

Moreover, “what-if” analysis can be conducted to evaluate the

effect of adjusting the pool size and/or role distribution, or the

backlog prioritization has on the total number of sprints needed to

execute the backlog.

Fig 3: Flowchart that illustrates the assignment logic.

Fig 2. The application table that shows the Pod resource breakout and time (effort)

required to complete each backlog item.

If sprint is already

addressed and it is being

finished on this current

iteration

For each sprint iterate all

backlog items

Yes

Yes

Yes

No

No

Second Iteration

for Backlog Items

First Iteration for

Backlog Items

Start End
currentSprint – Current Sprint Number in Loop

backlogItems – The current backlog item

numberOfBacklogItems – All backlog items in order of prioritization

sprintStart – The sprint number that an activity suppose to start

sprintEnd – The sprint number that an activity suppose to end

sprintMax – The amount of sprints that the algorithm should analyze

backlogItems <=

numberOfBacklogitens

backlogItems <=

numberOfBacklogitens

currentSprint <=

sprintMax

Address currentSprint and substract

the needed employees from

resources pool

sprintStart = currentSprint and

sprintStop = (sprintEffort +

currentSprint(-1

Return the ammount of

employees from spint

back to pool

currentSprint already

addressed and

currentSprint ==

sprintStop + 1

Is there

resouces

available?

currentSprint

is already

addressed?

A U T O M AT E D W O R K F O R E C A S T S W H E N U S I N G T H E A G I L E P O D A P P R O A C H / 6

Solution extensions

The solution we describe above is basic and can be extended

along several dimensions to make it more practically useful. We

describe two such examples in the following sub-sections.

Backlog items are not always mutually exclusive

In the basic model, we assume there are no dependencies among

backlog items, which is not always the case. For example, a

backlog item that describes a pilot may need a proof-of-concept

or case study to complete first, which is registered as a different

backlog item. To address this, the solution can be extended

with an additional column to denote where a backlog item has

a dependency on another item. When the code logic executes,

it will not assign a pod to a task that has a dependency on an

item that did not complete or achieve a specified threshold of

completeness. One example of such a threshold could be that

75% of the item`s sprints have already completed, or that it is

currently in the last sprint.

One needs an exact match between resource needs

(pod structural makeup) and what is available in the pool

A backlog item may need, for example, one architect, two

engineers, and 0.5 testers. However, for example, the pool could

have an architect and two engineers available, but not the tester.

In the basic approach described above, an assignment will

not be made as an exact match was not found. However, if we

mathematically represent the pod needs vs. the closest available

resources in the pool as two separate vectors, one can determine

how closely the available resources match the requirements by

means of a cosine similarity measurement. In the example above,

this could be represented as:

Match = Cosine Similarity of [1, 2, 0.5] and [1, 2, 0] = 0.96

If the Cosine similarity value is greater than a set threshold (0.90,

for example), the pod assignment will be made, and the missing

resources will be prioritized to this backlog item for future sprints

by creating a high priority pseudo backlog item. In the example

we presented here, the pseudo item will a pod resource need of

0.5 QA.

Other use cases

The solution can also be extended to either suggest:

• an optimized backlog to minimize the execution time, given a

fixed resource pool

• an optimal resource pool role distribution, given a fixed

backlog and timeframe

Automatic prioritization of the backlog

We can extend the method to suggest how the backlog items

should be prioritized to achieve the highest throughput (i.e.,

work through the entire backlog in the shortest time using fixed

resources). This can be done by creating different prioritization

scenarios and executing the forecast for each such scenario to

suggest which prioritization sequence leads to greatest overall

efficiency of the pool of resources.

However, since there are too many possible permutations, even

for a backlog of 20 items, to analyze in a reasonable time, a

smaller subset of scenarios should be pre-generated.

One such way is to break the backlog into a small number of

clusters where each cluster aligns with business demand (highest

priority, lowest priority, etc.), and for each cluster create a set

of all possible scenarios. The number of permutations for each

such cluster is n! where n denotes the number of backlog items

in the cluster. For a cluster with 5 backlog items, the number

of permutations is 5!, i.e., 120 possible scenarios that need

to be analyzed to optimizes this cluster. This means that for a

backlog with m clusters, the total number of permutations that

will be analyzed are n1! + n2!+ … + nm!, where n1 denotes

the number of backlog items in the first cluster, n2 denotes the

number of items in the second cluster, and so on.

As a practical example: For a backlog of 10 items, without

splitting the items into clusters, the number of possible

combinations is 10! = 3628800. However, by splitting the

backlog into two lots of 5 each, the total number of permutations

that need to be worked through is only 5! + 5! = 240, thus

reducing the work effort by more than four orders of magnitude.

By then using, for each of the clusters, that sequence which

A U T O M AT E D W O R K F O R E C A S T S W H E N U S I N G T H E A G I L E P O D A P P R O A C H / 7

drives towards the smallest work effort we approximate the

optimal item prioritization sequence.

Team structure Optimization

Finally, we can extend the method to optimize the pool structure

(role distribution) and size to produce the desired throughput

under a fixed time span. This use case can be useful for

determining resource needs when performing project cost

estimation exercises. By setting an initial default pool breakout

and then tracking (while performing the analysis) which roles are

bottlenecks when a backlog item assignment cannot be made, as

well as which roles are always left with additional capacity when

all other roles have been assigned, the algorithm can produce a

readout of such under-represented and over-represented roles.

These can then be used by the algorithm to tweak the team

structure and/or size which will result in a more compressed

timeline when the simulation is executed again. Through making

such tweaks and executing the algorithm recursively, an optimal

resource pool size can be determined to work through the

backlog in the desired number of sprints.

C O N C L U S I O N S

Agile pods provide an elegant way to manage complex

projects where backlog items vary in scope and the type

and count of resources needed to address each item. A

challenge with the approach is that it is hard to forecast

when certain backlog items will be addressed, and indeed,

whether the workforce will be sufficient to address all the

backlog items over the duration of the engagement.

Our approach solves this problem efficiently and can easily

be extended to deal with complex scenarios.

The method we developed is also useful in optimizing the

utilization of the pods since it allows one to easily create

“what-if” scenarios by changing backlog item priorities or

determining what the effect would be if the original pool

role breakout and/or backlog item role assignments are

adjusted

AUTHORS
Gerhardt Scriven, Principal Consultant

gerhardt.scriven@capco.com

Diego Sarai, Principal Consultant

diego.sarai@capco.com

JN_3735

ABOUT CAPCO
Capco, a Wipro company, is a global technology and management consultancy specializing in

driving digital transformation in the financial services industry. With a growing client portfolio

comprising of over 100 global organizations, Capco operates at the intersection of business and

technology by combining innovative thinking with unrivalled industry knowledge to deliver end-

to-end data-driven solutions and fast-track digital initiatives for banking and payments, capital

markets, wealth and asset management, insurance, and the energy sector. Capco’s cutting-edge

ingenuity is brought to life through its Innovation Labs and award-winning Be Yourself At Work

culture and diverse talent.

To learn more, visit www.capco.com or follow us on Twitter, Facebook, YouTube, LinkedIn

Instagram, and Xing.

WORLDWIDE OFFICES
APAC
Bangalore
Bangkok
Gurgaon
Hong Kong
Kuala Lumpur
Mumbai
Pune
Singapore

EUROPE
Berlin
Bratislava
Brussels
Dusseldorf
Edinburgh
Frankfurt
Geneva
London
Munich
Paris
Vienna
Warsaw
Zurich

NORTH AMERICA
Charlotte
Chicago
Dallas
Hartford
Houston
New York
Orlando
Toronto
Tysons Corner
Washington, DC

SOUTH AMERICA
São Paulo

© 2021 The Capital Markets Company. All rights reserved.

WWW.CAPCO.COM

mailto:gerhardt.scriven%40capco.com?subject=
mailto:diego.sarai%40capco.com?subject=
http://www.capco.com/
http://www.capco.com
https://www.instagram.com/capco_global/
https://www.linkedin.com/company/capco
https://www.twitter.com/capco
https://www.youtube.com/capco_global
https://www.facebook.com/capcoglobal

