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D E A R  R E A D E R ,



Welcome to edition 55 of the Capco Institute Journal of Financial 
Transformation. Our central theme is cloud computing, which 
has transformed from an ef� ciency initiative for our clients, to 
an indispensable growth driver for � nancial services. 

The pandemic has changed consumer expectations, with 
consumers now demanding 24/7 access to their � nancial 
resources from anywhere, as well as hyper-personalized 
products that re� ect their lifestyle choices. 

In this edition of the Journal, we explore the power of cloud 
and its potential applications through the lens of a joint Capco 
and Wipro global study, and take a deeper look at the � nancial 
services data collected in Wipro FullStride Cloud Services’ 
2021 Global Survey. The survey was focused on perceptions 
of cloud and its importance to business strategy from 
over 1,300 C-level executives and key decision-makers across 
11 industries. 

The study indicates that cloud is becoming ever more intelligent, 
hyperconnected, and pervasive, and enables companies to 
offer their end users the personalized, user-centric experience 
that they have come to expect. It’s clear that only the � nancial 
services � rms that can successfully leverage cloud, will thrive. 

In addition, this edition of the Journal examines important 
topics around digital assets and decentralized � nance, 
including central bank digital currencies, and bitcoin’s impact 
on the environment, and cybersecurity and resilience.

As ever, you can expect the highest calibre of research and 
practical guidance from our distinguished contributors, and I 
trust that this will prove useful in informing your own thinking 
and decision-making. 

Thank you to all our contributors and thank you for reading. I 
look forward to sharing future editions of the Journal with you.

 

Lance Levy, Capco CEO
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multi-faceted risk is a dif� cult task and a major concern for 
insurers. The extreme severity of some cyber events [Farkas 
(2021)] on the one hand and the potentially “systemic” nature 
of the risk on the other hand [Hillairet and Lopez (2021)] could 
endanger the principle of mutualization, which is at the heart 
of the insurance business. In particular, massive cyberattacks 
and contagion effects can lead to massive failures that can 
bring an economy to a halt, or at the very least jeopardize the 
solvency of an insurer. For example, the report by Cyence and 
Lloyd’s of London [Cyence (2017)] estimates that the cost of 
an attack on a major cloud provider would be in the range of 
U.S.$15 billion to U.S.$121 billion, with an estimated average 
loss of U.S.$53 billion. The Wannacry or NotPetya episodes are 
also warning signs of massive cyberattacks, whose estimated 
costs are in the billions of dollars. It is important to note that 
even if the damages of each individual incident are low, the 
simultaneous occurrence of a large number of incidents in a 
massive attack can result in very high cumulative costs.

ABSTRACT
This paper proposes a stochastic model to simulate massive cyberattack scenarios, taking into account the structure of 
the network as well as partial or full protection measures. Events, such as the recent COVID-19 pandemic, can rapidly 
generate consequent damages, and mutualization of the losses may not hold anymore. The framework is based on the 
multigroup SIR (susceptible, infected, and recovered) epidemiological model, which can be calibrated from a relatively 
small amount of data and through fast numerical procedures. As an illustration, we replicate the impact of a Wannacry-
type event using a connectivity network inferred from macroeconomic data of the OECD. We show how this model can 
be used to generate reasonable scenarios of cyber events, and investigate the response to different types of attacks or 
behavior of the actors, allowing for the quanti� cation of the bene� ts of an ef� cient prevention policy.

CONSTRUCTION OF MASSIVE CYBERATTACK 
SCENARIOS: IMPACT OF THE NETWORK 

STRUCTURE AND PROTECTION MEASURES

 1. INTRODUCTION

With the growth of the digital economy, cyber risks are now 
one of the most important, if not the most important, threats 
facing the global � nancial system. The annual losses caused 
by cybercrime are estimated to be close to 1 percent of the 
world’s GDP, U.S.$1 trillion. This threat has been ampli� ed 
since the COVID-19 pandemic, as suggested by Kshetri (2020) 
and the French National Agency for Information Systems 
Security [ANSSI (2021)], which found a threefold increase in 
the number of reported ransomwares attacks between 2019 
and 2020.

To face of cyber risk, insurance has a crucial role to play 
[Xie et al. (2020)]; and it is not only a matter of � nancial 
compensation, as cyber contracts generally include offers of 
prevention and assistance in the event of a loss [Romanosky 
et al. (2019)]. Nevertheless, quantifying the impact of this 

1  The authors acknowledge funding from the project “Cyber Risk Insurance: actuarial modeling”, Joint Research Initiative under the aegis of the Risk 
Foundation, in partnership with of AXA, AXA GRM, ENSAE, and Sorbonne Université.
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In this paper, we propose a general and � exible framework 
to model the dynamics of a cyber contagion and to simulate 
accumulation scenarios, with a focus on their impact on an 
insurance portfolio. In order to take into account networks 
effects in the contagion [Fahrenwaldt et al. (2018)], we adopt 
a multi-group SIR model (susceptible, infected, and recovered) 
[Beretta and Capasso (1988), Guo et al. (2006), Magal et al. 
(2018)]. These types of compartmental models are commonly 
used to describe biological epidemics since McKendrick 
(1925), and have already been applied to several actuarial 
applications [Chen and Cox (2009), Lefèvre et al. (2017), 
Garrido and Feng (2011)]. Special attention is paid to the 
quanti� cation of the impact of prevention and quick reaction 
to diminish the cost of such a massive cyber episode. 

2. EPIDEMIOLOGICAL MODELS WITH 
NETWORKS EFFECTS

In order to propose a simple and � exible approach, we 
propose to model the strength of the cyber pandemic on the 
global population. Subsequently, the impact on an insurance 
portfolio is considered, assuming that contamination is more 
likely to come from outside the portfolio than from inside. This 
seems reasonable, based on the fact that a portfolio is in fact 
  small when compared to the global population among which 
the cyber epidemic spreads.

2.1 Model on the global population

The construction of accumulation scenarios is based on 
stochastic epidemiological contagion models adapted to the 
context of cyber risk, similar to the virus contagion models 
like those used for the COVID-19 pandemic. Barrier measures, 
such as vaccinations, are replaced here by other preventive 
measures, such as identifying and correcting vulnerabilities. 
The risk of the saturation of intensive care services is replaced 
by the risk of being unable to provide all the necessary 
assistance to the insured, which could lead to an aggravation 
of the total costs. 

Nevertheless, despite the analogy between cyber and 
biological epidemics, there are still differences, particularly 
in terms of timescales, parameter values, and the nature 
of the risk. Consequently, the existing models need to be 
adapted to the cyber context. In particular, the heterogeneity 
of the population (for example, in terms of security levels or 
of assets that can be targeted by hackers, etc.) may have 
an important impact on the spread of the contagion. Thus, 

our model relies on a multi-group SIR model (susceptible, 
infected, recovered) [Kermack and McKendrick (1927)]. In this 
model, the population is decomposed into d categories (for 
example, representing different sectors of activities), and the 
population2 within each category j ∈ [1, d] is split into three 
groups [sj(t), ij(t), rj(t)), where for any date t ≥ 0:

•  The “susceptibles” [s
j
(t)] are the entities in 

sector j (at date t) that can be impacted by the 
ongoing cyberattack.

•  The “infected” [i
j
(t)] are former susceptibles of sector 

j that became “infected” by the cybervirus and that 
are contagious.

•  The “removed” [r
j
(t)] are former infected of sector j that 

stopped participating in the contamination (because, for 
example, countermeasures have been adopted).

Then the dynamics of the population in each group is given 
by the following systems of ordinary differentials equations 
(presented in the Appendix A), where,

•   The matrix B = (β
k,j

)
1≤k,j≤d

 (not necessarily symmetric) 
conveys the information on how class k contaminates 
class j. This matrix is the key element of the model to 
capture the network topology.

•  The vector A(t) = (α j(t))1≤j≤d represents a latent form 
of attacks (not contagious).

•  The vector H(t) = (η j(t))1≤j≤d represents a protection 
component against the threat, which diminishes the rate 
of new infections through time.

•  The vector Γ(t) = (γ j(t))1≤j≤d represents the 
recovery rate.

By recovery, we do not mean “full recovery” (that is retrieving 
the same level of activity): the timescale for full recovery may be 
much longer than the duration of the crisis (weeks or months, 
compared to days). Note that this model encompasses wider 
situations than cyber contagion, such as, for example, a break 
in the supply chain (in such situations, matrix B generates a 
chain of dependence between different sectors of the activity).

At the global population level, the total number of victims from 
a cyber incident is computed by solving a � xed point equation 
whose solution can be easily determined numerically [Hillairet 
et al. (2021)]. Then, measuring the total number of infected 
individuals in each group of the population (depending on the 
starting point of the infection) allows us to better understand 

2 Assuming the global size of the population is constant (equal to N), which seems reasonable for a cyber crisis that
only lasts a few days.
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the impact of connectivity between classes and to quickly 
calibrate or assess the impact of such an episode. 

2.2 From the multi-group SIR to the impact on 
an insurance portfolio

The multi-group SIR de� ned in Section 2.1 describes the 
dynamic of the cyberattack on a large population. On the other 
hand, an insurance portfolio is of a smaller size and can be 
understood as a random sample of individuals from the global 
population. Denoting T

m
 the infection date of a policyholder m 

(belonging to category x
m
 ∈ [1, d]), T

m
 is then a random time 

characterized by its hazard rate λ
Tm

 (that may be in� nite):

λTm
(t) = lim

dt→0+

P(Tm ∈ [t, t + dt] l Tm ≥ t)
dt

λTm
 re� ects the severity of the cyber-contagion at a global level, 

depending on the category xm; it is given by the probability of 
selecting a newly infected individual among the individuals of 
the global population, that is

λTm
(t) = λ(t,j) = nj(t) {αj(t) + ∑d

k=1βkjik(t)} if xm= j

Then the average number of infected policyholders of category 
j in the portfolio (denoting n

j
 the size of category j in the 

portfolio) is given by:

nj(1 – exp{-ʃ∞
0

 λ(t,j)dt}) = nj vj with a variance of 
njνj(1 − νj) [Hillairet et al. (2021)].

In addition to a partial protection (for example by increasing 
awareness of the threat) modeled through the parameter H, in 
some cases a perfect protection is possible, by implementing 
patches or antivirus. We model this by an independent random 
variable Cm that represents the time at which the policyholder 
m implements security changes that make them immune to 
the attack. As for Tm, Cm is modeled through its hazard rate 
λCm

 and acts like a censoring-variable: denoting  δm = 1Tm≤Cm
, 

δm = 0 indicates that immunity has been acquired, before 
contamination has occurred.

The aim of this paper is to analyze the impact of the network 
structure and of partial or full protection measures on the 
spread of the attack. But before we deal with that, one 
important and challenging task that needs to be undertaken 
is calibrating the model, or at least determining reasonable 
numerical values for the parameters of the equations in 
Appendix A. We now describe the heuristic we have developed 
to mimic a Wannacry-type incident and its propagation, with a 
network   structure based on OECD data.

3. NUMERICAL IMPLEMENTATION

Determining reasonable values for the parameters is a dif� cult 
task due to the lack of public data on the network structures 
as well as on the real-time evolution of a cyber crisis. We 
� rst consider the model in Appendix A with no reaction (that is 
η

j
 = 1 and C

m
 = ∞  for all j and all m).

3.1 Connectivity between sectors

We give an example of calibration of the network based on 
macroeconomic data of the OECD [OECD (2018)], to identify 
the dependence between some sectors of activity, namely the 
categories of mining, manufacturing, energy, construction, and 
services. Although we admit that OECD data do not provide 
a very accurate vision of the connectivity between these 
sectors, our aim is to determine a reasonable benchmark 
and to show that plausible parameters may be obtained 
through the use of a relatively small amount of data. Assuming 
that the digital � ow between these categories is somehow 
proportional to the economical � ow, and after a normalization 
by the number of companies in each category, we obtain the 
following connectivity matrix B0, with the sum of all coef� cients 
equal to 1 [see Lopez et al. (2021) for more details on the 
computation of B0].

 3.2 Simulation of a Wannacry-type event

In the dynamics described by equations in the Appendix A, we 
consider the contagion matrix B = βB

0
, where parameter β 

captures the intensity of the contagion, is calibrated on a cyber 

Table 1: Normalized connectivity matrix B
0
 

MINING MANUFACTURING ENERGY CONSTRUCTION SERVICES TOTAL

MINING 0.0634 0.2927 0.0449 0.1427 0.1255 0.6692

MANUFACTURING 0.0063 0.0527 0.0027 0.0108 0.0351 0.1076

ENERGY 0.0135 0.0370 0.0571 0.0150 0.0452 0.1679

CONSTRUCTION 0.0019 0.0068 0.0007 0.0141 0.0091 0.0326

SERVICES 0.0003 0.0042 0.0004 0.0017 0.0161 0.0227

TOTAL 0.0855 0.3934 0.1057 0.1844 0.2309 1
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event similar to Wannacry. The Wannacry attack [May 2017, 
see Mohurle and Patil (2017)] is particularly emblematic due 
to the important number of computers infected around the 
world [more than 300,000 according to Chen and Bridges 
(2017)]. The attack consisted of a ransomware introduced 
into the systems through a well-documented vulnerability 
of Microsoft Windows [EternalBlue exploit, see Kao and 
Hsiao (2018)]. In this Wannacry episode, the susceptibles 
were computers vulnerable to the Eternal Blue exploit, but 
whose total number is hard to track – in fact, even the exact 
number of computers equipped with a given operating system 
is impossible to obtain. Consequently, we rely on indirect 
information about the total number of victims, the length of the 
episode (approximatively 10 days), and its dynamic (namely 
the timeline of the payments of ransoms, which is publicly 
available due to the use of the Bitcoin protocol). To ignite the 
epidemic, we consider a burst of infections caused by the 
hackers that strike the victims at uniform rate α0 during one 
day: α

j
(t) = α

0
1

t≤1
 for all j. We take γ = 1, which corresponds 

to a fast containment (approximately 1 day) preventing 
the cyberattack to spread. This order of magnitude seems 
reasonable for the case of non-silent infections by malwares: 
once the victims identify they are attacked, links with the rest 
of the network may be easy to cut. This leads to the following 
set of parameters described in Table 2.

 3.3 Numerical results

We � rst compute the evolution through time of the infected in 
each category, as reported in Figure 1. We can observe that 
the peak of infections is not located at the same time (it is 
achieved later for services, with a slower decay).

 We then investigate the vulnerability of the different sectors, by 
concentrating the initial attack on a given sector j (that is α

j
(t) 

= α(j)1
t≤1

, and α
k
(t)= 0 for k ≠ j). To make things comparable, 

we take α(j) = α
0
/p

j
, where p

j
 is the proportion of sector j in 

the global population. We compare it to the case of a uniform 
attack α

0
 on all sectors. The proportions of companies (sector 

by sector) affected by the epidemic, depending on the targeted 
sector, are given in Table 3.

We observe that the mining sector seems to be the most 
contagious one. This can also make sense from a supply-chain 
modeling perspective. Nevertheless, this high contagious  ness 
is to be tempered by the small population size of this sector.

4. IMPACT OF REACTIONS TO THE ATTACK

 4.1 Reactions providing partial protection

We � rst consider the case where, during the crisis, a reaction 
of some categories can occur to lower the infection rate and 
to reduce the impact of the episode. In the Wannacry case, 

CYBER  |  CONSTRUCTION OF MASSIVE CYBERATTACK SCENARIOS: IMPACT OF THE NETWORK STRUCTURE AND PROTECTION MEASURES

Table 3: Proportion of infected sector by sector, depending on the targeted sector 

 TARGETED SECTOR MINING MANUFACTURING ENERGY CONSTRUCTION SERVICES

Uniform attack 1.06% 4.11% 0.99% 2.07% 8.86%

Attack on Mining 99.70% 12.69% 1.36% 5.49% 20.37%

Attack on Manufacturing 1.02% 16.01% 0.66% 3.05% 16.58%

Attack on Energy 0.93% 5.96% 64.08% 2.35% 12.93%

Attack on Construction 0.33% 2.49% 0.21% 6.60% 5.72%

Attack on Services 0.25% 2.59% 0.21% 1.01% 7.84%

Figure 1: Evolution of the proportion of infected 
– Uniform bombing
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Table 2: Parameters used to simulate a 
Wannacry-type episode

 PARAMETER VALUE

α0 7 × 10−3

β 1.845 × 10−5

γ 1

N 4,064,279
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for example, a “kill switch” was identi� ed [Mohurle and Patil 
(2017)] that made it possible to diminish its severity. To 
illustrate this, we assume that the threat draws the attention 
of category j and is considered worth taking measures only 
if a suf� cient number (namely s) of victims have been hit. 
This translates into the model presented in Appendix A, by 
introducing the function η

j
 (corresponding to the reaction of 

category j) given by  η
j
(t) = 1 – ρ Ʃd

k=1ik(t)≥s.

We consider two levels of protection, ρ = 0.1 and ρ = 0.5, 
and two different thresholds of reaction s = 10,000 and 
s = 50, 000. Table 4 shows the impact of reaction in case of a 
uniform initial attack, and when only one single sector reacts. 
The column “Total” shows the ratio between the number of 
victims if reaction, over the number of victims without reaction. 
The column “Collateral” shows the ratio of the number of 
victims in the sectors that do not react, over the number of 
victims in these sectors if there is no reaction at all.

One observes that the reaction having the most important 
impact is the one on the services sector. As this sector 
contains the largest number of companies, this reduction of 
the size of the cyber epidemic is � rst of all caused by the fact 
that fewer companies in this sector are infected, due to the 
reaction. But it is also interesting to notice that this  induces 
effects in the other sectors too, since the collateral gains are 
quite important too.

4.2 Reactions providing full protection

We now consider the case of an insurance portfolio of 
n policyholders representative of the global population. 
The policyholders have the possibility to implement (after 
some delay τ) an antivirus that provides immunity against 
the attack. This is captured by the random variable C 
(as in δ

m
 = 1

Tm≤Cm
) modeled by three types of hazard rate:

•  A translated exponential distribution. This means 
that, once the response has begun, the proportion of 
policyholders per time who update their security system 
is constant through time.

•  A Pareto-type distribution. This corresponds to a situation 
where the vigilance of the policyholders decreases 
through time.

•  A Weibull-type situation where there is a progressive 
attention devoted to this threat among policyholders.

In each case, the parameter τ represents the reactivity of 
the response. Figure 2 provides a simulated trajectory of 
the number of policyholders requiring immediate assistance, 
for n = 10,000 exposed policies and for three delays of 
reaction: a fast response (τ = 3 days after the start of the 
event), a medium response (τ = 5 days), and a slow response 
(τ = 7 days).

The size of this peak can be of some concern, as pointed 
in Hillairet and Lopez (2021), since many cyber insurance 
contracts are supposed to provide immediate assistance 
to their policyholders when hit. However, a very high peak 

Table 4: Impact of the reaction on the number of victims 

ρ = 10% s = 10,000 s = 50,000

TOTAL COLLATERAL TOTAL COLLATERAL

Mining 99.80% 99.99% 99,83% 99.99%

Manufacturing 94.60% 96.99% 95.82% 97.82%

Energy 99.81% 99.98% 99.84% 99.98%

Construction 98.51% 99.40% 98.87% 99.59%

Services 73.10% 77.62% 80.40% 84.36%

ρ = 50% s = 10,000 s = 50,000

TOTAL COLLATERAL TOTAL COLLATERAL

Mining 98.97% 99.90% 99.14% 99.93%

Manufacturing 76.87% 86.55% 81.92% 90.19%

Energy 99.03% 99.88% 99.21% 99.92%

Construction 92.99% 97.14% 94.66% 98.03%

Services 30.04% 38.29% 45.65% 54.04%

Depending on the sector which reacts (only one sector at a time) and on the thresholds activating the reaction, in case of an uniform 
initial attack.
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Figure 2: Dynamics of the number of policyholders requiring 
immediate assistance
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5.  CONCLUSION

In this paper, we propose a general and � exible model for 
constructing cyber-hurricane scenarios, taking into account 
some network structures and analyzing the impact of 
protection measures. In the numerical part, we use a rough 
connectivity matrix inferred from macroeconomic data of 
OECD and we mimic an event similar to the famous Wannacry 
episode. We emphasize the � exibility of the model, which 
can be easily adapted to various network structures and 
various scenarios. In particular, this model can be used to 
quantify the bene� ts of a reaction to such a crisis. Indeed, 
behavioral studies is determinant to evaluate the risk that the 
system collapses.

APPENDIX A: ORDINARY DIFFERENTIALS EQUATIONS 
MODELING THE DYNAMICS OF THE POPULATION IN 
EACH GROUP 

could lead to a situation where it might be impossible to 
deliver the service that was contractually guaranteed. In 
addition, if assistance comes too late due to saturation, this 
could increase signi� cantly the amount of damages. We 
see that a slow response will hardly diminish the burden of 
the assistance teams, while a fast response in three days 
signi� cantly reduces the magnitude of the peak of the attack.

=-ηj(t) {αj(t) + ∑d
k=1 βk,j ik(t)}sj(t),

=ηj(t) {αj(t) + ∑d
k=1 βk,j ik(t)}sj(t) – γjij(t)

=γjij(t)
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