
M I C R O S E R V I C E S C O D E F A C T O R Y

G E N E R AT I V E A I ’ S P O T E N T I A L F O R E N D - T O - E N D A U T O M AT I O N O F

B A N K I N G L E G A C Y S Y S T E M S R E F A C T O R I N G

GENERATIVE AI’S POTENTIAL FOR KNOWLEDGE MANAGEMENT / 2

In this article, we evaluate the use of generative AI in supporting the complete process of
refactoring monolithic applications into microservices-based solutions.

This is the third post in our Generative AI series. The first post considered usage of
Gen-AI over the entire software delivery lifecycle for greenfield projects1, and the second
focused on using advanced knowledge management techniques towards soliciting better

responses from Gen-AI2.

Many financial institutions are taking the route of splitting

their legacy monolithic applications into microservices to

achieve modernization through digitalization and migration to

cloud. This process starts with refactoring, i.e. restructuring

legacy monolithic applications into the optimal number of

microservices to achieve the best results.

In this post, we describe our efforts and results of executing

practically against our refactoring methodology, described in

a recent paper3. The methodology uses machine learning to

generate the ideal refactoring scenario (blueprint) for any legacy

monolithic application, resulting in an optimized collection

of microservices for superior system performance and with

minimized cloud operational costs.

As a next step, our Microservices Code Factory uses the

refactoring recommendation blueprint to create, test and

document code for the entire microservices collection. We

explore how Gen-AI can assist with this process, helping

improve the code quality and accelerate the end-to-end

automated refactoring process.

I N T R O D U C T I O N

There are several ways in which monolithic applications (or any

workloads) can be migrated to the cloud, such as rehosting,

re-platforming, refactoring, re-architecting, and so on. Of

these, refactoring allows to enjoy the benefits of a cloud native

architecture, but without the (often significant) cost and time

penalties that come with rebuilding the application from scratch.

Automation around a refactoring approach is naturally of

interest as this can help turn massive complexity into something

that is manageable and viable.

I M P O R TA N C E O F T H E T O P I C

GENERATIVE AI’S POTENTIAL FOR KNOWLEDGE MANAGEMENT / 3

Transforming a monolithic application into a microservices-

based solution (using the target state blueprint our refactoring

methodology provides) can largely be done using a deterministic

approach that:

• Generates appropriate code repositories, and

• Lifts out existing code functions in the monolith and

moves them to the appropriate microservices together

with auxiliary assets such as unit tests and technical

documentation, aiming for maximum reuse of existing

assets.

There are areas where Gen-AI is especially well-geared to help

improve quality and accelerate the code refactoring process, i.e.

we use Gen-AI as a co-pilot, specifically for:

1. Discovering external dependencies: Monolith

applications often have dependencies, such as external

code libraries they need to function, database connections,

external components, and so on. These dependencies

need to be ‘inherited’ by the appropriate microservices.

2. Creating unit test cases for the new service layer:

Legacy applications are often many years old and

frequently have little or no unit test coverage, making it

hard to maintain code quality.

3. Auto-documenting the new solution: Documentation

of legacy applications is often very outdated and/

or incomplete. Such documentation is invaluable to

newcomers or to use as reference during production

outages.

4. Improving code quality: As we are lifting the source

code from the monolith to the new microservices, we have

a great opportunity to use Gen-AI to improve the code

without changing its functionality.

H O W G E N - A I C A N H E L P W I T H TA S K S T H AT W O U L D
B E N E A R - I M P O S S I B L E T O A C H I E V E W I T H O U T I T

P R O C E S S
S T E P S

C O M P O N E N T S
1 2 3 4 5 6

Capco

refactoring

methodology

(to create the

optimized

microservices

stack

recommendation)

‘Crawl’ the

monolith source

code and

generate a list of

code functions

with detailed data

profiles

Cluster code

functions

based on data

similarity and

generate a target

microservice

composition

recommendation

(blueprint)

Capco

Microservices

Code Factory

- Use the blueprint to

generate code repositories

(folders)

- Lift source code over from

functions in the monolith

into the appropriate

microservices as per the

blueprint

- Migrate existing unit test

cases from the monolith

to the corresponding

microservices

Generate an

intra-service

communications

layer

Replicate

the monolith

configuration

files to the

microservices

Gen-AI (LLM -

large language

model) as a

co-pilot

- Enhance (or create new

if none exist) additional

unit tests

- Generate technical

documentation (source code

and API specifications)

- Improve code quality

based on given parameters

Generate

documentation to

account for the

additional APIs

Evaluate

external

dependencies

GENERATIVE AI’S POTENTIAL FOR KNOWLEDGE MANAGEMENT / 4

As a practical case study, we selected a monolithic application

that manages the sales, production, and logistics of a product.

This legacy system was poorly documented but had some pre-

existing test coverage built in. The code stack uses Java v11,

and employs SpringBoot (v2), MVC, and JPA.

We used the approach outlined in Figure 1 to execute the

monolith refactoring process. Our end-to-end solution spans

across six steps and comprises our refactoring methodology

(code crawler plus clustering engine), our new Microservices

Code Factory – a tool for generating microservices code, and

Gen-AI.

Figure 1. Automating the end-to-end monolith refactoring process with Gen-AI

C A S E S T U D Y

GENERATIVE AI’S POTENTIAL FOR KNOWLEDGE MANAGEMENT / 5

Once we’ve created the microservices stack recommendations

(a blueprint that will guide the source code transformation

process), and generated a code repository for each of the

target-state microservices, we create a new intra-service

communications layer among the new microservices stack that

mimics the existing internal data read/write interactions in the

monolith. This is where our Gen-AI co-pilot comes into play:

• We use AI to analyse the monolith source-code unit

tests and create additional tests towards improving code

coverage. If no unit test cases exist in the monolith, AI

creates these tests from scratch, and this is integrated into

the code repositories.

• Gen-AI generates technical documentation including:

• JavaDocs for documenting classes, methods, fields,

and other program elements in the newly created

microservices

• API specifications (OpenAPI) for each service. This

includes all existing APIs as well as new API endpoints

arising from the intra-service communications layer.

• As part of moving code over from the monolith to the

microservices, code functions are sent to AI, with the

purpose of improving code quality. Gen-AI is requested

to apply the code quality rules we define (based on

Sonar software quality management system) and adjust

the code accordingly without changing the underlying

functionality or method signature. By doing this, we ensure

that the microservice code stack will be generated with

Sonar quality improvement recommendations and save

significant time in applying such code changes manually at

a later stage.

• We use Gen-AI to evaluate all external dependencies of the

monolith to ultimately enable replicating these references

into the new service layer. These include items such as

database configurations, required permissions, and so on.

GENERATIVE AI’S POTENTIAL FOR KNOWLEDGE MANAGEMENT / 6

API endpoints Test coverage

(lines of code)

API documentations Technical

documentations

100%

50%

0%

Figure 2. Impact of involving AI in the automated monolith refactoring process in our case study

Microservices Code Factory Gen-AI

Our automated, end-to-end refactoring process delivered well

beyond expectations, and whilst not a magic bullet, Gen-AI is

the best co-pilot you could wish for to support this process.

With Gen-AI’s help, we were able to ensure that the blueprint

created by our original methodology was followed precisely.

AI models assisted in the areas of creating a complete test

coverage and comprehensive technical documentation for the

new code. Gen-AI particularly impressed us with its ability to

improve code quality based on our parameters.

Figure 2 shows, in summary, the impact of involving Gen-AI

in our automated end-to-end monolith refactoring process

using our case study as a point of reference. In this chart, dark

green denotes the percentage of activity performed directly

by our Microservices Code Factory tool, and light green – the

proportion done via Gen-AI. It is clear from the chart that Gen-AI

made a significant contribution, automating aspects of the

refactoring process that would be impossible to do at scale by

human hand alone.

For example, for API endpoints, the code factory lifted

approximately 50 percent of the API endpoint-related code from

the monolith to the microservices stack. The other 50 percent

was created using Gen-AI towards facilitating intra-service

communication. As another example, where the original legacy

system had no API documentation, AI significantly accelerated

the process of creating comprehensive specifications, for both

existing endpoints that were lifted from the monolith as well as

the new intra-service endpoints.

AI also performed particularly well in terms of providing a

detailed checklist of all jobs to be done as part of the refactoring

process, such as database and email configuration.

R E S U LT S

A U T H O R S
Gerhardt Scriven, Managing Principal

Diego Sarai, Managing Principal

Rafael Maciel, Senior Consultant

Warley Rocha, Senior Consultant

R E F E R E N C E S
1. Generative AI’s Potential For Industrializing And Scaling Software Delivery (capco.com)

2. Generative AI’s Potential For Knowledge Management (capco.com)

3. Automation Of Legacy Banking Systems Refactoring (capco.com)

C O N TA C T S
Alessandro Corsi, Partner, alessandro.corsi@capco.com

Luciano Sobral, Partner, luciano.sobral@capco.com

We were able to conclusively demonstrate that, through

a combination of recommendations from our refactoring

methodology, our microservices code generator and the power

of Generative AI, legacy monolithic applications refactoring

projects can be automated end-to-end. The resultant target

state technology stack in our case study offered good test

coverage, was well documented, and reduced the challenges

around managing external dependencies. Not only was the code

created, but it was also supportable and testable.

Importantly, automating the creation of microservices code

against our blueprint would have taken approximately 3-4

months in our case study to do manually. Using AI this was

achieved in 1.5 hours, with 100 percent accuracy and

completeness and a significantly improved code quality

compared to the original monolith code.

As always, there is room for enhancing several dimensions

in this solution, which will be covered as part of our future

research:

• Transformation of non-Java-based monoliths - we plan

to use Gen-AI to transform legacy source code written in

other programming languages such as COBOL or C#. It is

expected that Gen-AI will be extremely helpful with code

translation between monolith and target state.

• Gradual refactoring approach comprising intermediate

states for very complex transformation initiatives - in these

cases, the monolith will be systematically ‘strangled’ and

the monolith–microservices co-existence will need to be

managed over a period of time.

• Decomposition of multiple monoliths with partially

overlapping features into a single microservices technology

stack.

• Automated approaches to connect the microservices back-

end code created by our solution to the front-end code.

C O N C L U S I O N

JN_5236

© 2023 Capco – The Capital Markets Company GmbH | Opernplatz 14, 60313 Frankfurt am Main | All rights reserved.

WWW.CAPCO.COM

https://www.capco.com/en/Intelligence/Capco-Intelligence/Generative-AI-Industrializing-And-Scaling-Software-Delivery
https://www.capco.com/en/Intelligence/Capco-Intelligence/Generative-AIs-potential-for-knowledge-management
https://www.capco.com/Intelligence/Capco-Intelligence/Automation-Of-Legacy-Banking-Systems-Refactoring
mailto:alessandro.corsi%40capco.com?subject=
mailto:luciano.sobral%40capco.com?subject=
https://www.xing.com/companies/capco-thecapitalmarketscompanygmbh
http://www.capco.com
https://www.instagram.com/lifeatcapco/
https://www.linkedin.com/company/capco
https://www.youtube.com/capco_global
https://www.facebook.com/capcoglobal

