
WHOSE SERVER IS IT ANYWAY?

WHOSE SERVER IS IT ANYWAY? / 2

Serverless architectures are the newest addition to the ever-
evolving Cloud infrastructure ecosystem, taking the offering
to a new extreme by completely abstracting the underlying
infrastructure from the consumer.

In this paper, we will explore the instances when less is indeed
more – and when it isn’t. This is by no means an exhaustive list,
but it does hope to address a core range of both architectural
and business considerations that users need to take into
account before adopting a serverless architecture.

1.	 https://dzone.com/articles/serverless-case-study-coca-cola
2.	 https://aws.amazon.com/solutions/case-studies/thomson-reuters/
3.	 https://dzone.com/articles/serverless-case-study-netflix

The most celebrated feature of serverless architectures is their ease of
scalability and subsequent cost optimisation. Simply put, you get on-
demand, highly-elastic infrastructure, which you only pay for when it’s
executing a triggered function, and you don’t need to allocate time for
any provisioning or operational admin. This model works exceptionally
well for lightweight, short-lived workloads, and the examples of its
successful application are numerous, a few examples being Coca
Cola1, Thomson Reuters2 and unsurprisingly, Netflix3.

Having said that, serverless architectures might not be the optimal
candidate in scenarios where processing demand is uniformly high,
i.e. workloads that consume significant compute resources. If you are
operating in these conditions, it would be advisable to perform a cost
analysis to consider other infrastructure models which might provide
healthier economics and performance overall.

EASE OF SCALABILITY & COST MANAGEMENT

https://dzone.com/articles/serverless-case-study-coca-cola
https://aws.amazon.com/solutions/case-studies/thomson-reuters/
https://dzone.com/articles/serverless-case-study-netflix

WHOSE SERVER IS IT ANYWAY? / 3

This may seem evident, but it is worth spending some time thinking this through,
regardless. Your Cloud FaaS provider of choice will have spent a long time profiling
their solution to avoid cold starts. There are no published time periods but if a
function and its associated infrastructure has been recently started, it will not be
shut down immediately. Think about your application behaviour patterns when
designing and if consistent performance is key, an application with a steady flow
of events, rather than one with intermittent events separated by a longer period
would experience far less cold starts on average.

When you can’t avoid a cold start, fine tune your code to play nicely in a serverless
world. Take a conservative look at the dependencies your code is subject to and
remove all unnecessary library dependencies, while reconsidering those where a
whole library is introduced for very small gain. Understand the options available
to you to configure the function instance. A memory allocation increase may help
or changing settings for long-running functions.

All the major Cloud providers offering FaaS solutions have improved (and continue
to improve) the scenarios under which an instance must cold start, however there
will always be such cases so thought should be given to design solutions to
mitigate this. For some use cases requiring consistent and low latency, functions
simply aren’t the right choice and clarity around your non-functional requirements
regarding such factors is important when making the leap.

TRY TO AVOID A COLD START IN THE FIRST PLACE

FINE TUNE YOUR CODE

Part of the attraction for adopting a serverless model is the ability to only pay for
what you use, which has cost and environmental benefits but can also cause
latency issues under certain circumstances. Recall that functions react according
to triggers, which in turn invoke the action they have been designed to achieve.
This means that the underlying infrastructure required for the deployed code may
not necessarily be available when the function is triggered, leading to introduction
of latency in the form of a ‘cold start’, or ‘cold boot’.

The important consideration to make when employing a serverless architectural
pattern, is to design the function(s) to mitigate the issues that could cause a cold
start and also to reduce the time it takes for a function to be started under cold
start conditions. A few of the more common principles to follow are noted below:

LATENCY

WHOSE SERVER IS IT ANYWAY? / 4

4.	 https://customers.microsoft.com/en-gb/story/quest
5.	 https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
6.	 https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
7.	 https://cloud.google.com/functions/quotas
8.	 https://serverless.zone/faas-is-stateless-and-aws-step-functions-provides-state-as-a-service-2499d4a6e412

As opposed to deploying entire applications and provisioning
segments of infrastructure, a serverless architecture is much
easier to manage operationally. With the typical responsibilities
of other infrastructure models removed, the main component
requiring developer attention is the FaaS smallest unit of measure
– the ephemeral function. This enables developers to experiment
with small, new, unstructured concepts, wrapped in a function
connecting to a series of events in the existing ecosystem, which
in turn allows the organisation to develop and release new features
in a matter of minutes. Some organisations managed to reduce
their time to market by two thirds4 through applying a serverless
architecture model.

FaaS are inherently composed of ephemeral functions, which
only lend themselves to short-lived processes. Amazon Lambda
functions can be configured to run for a maximum of up to 15
mins5; Microsoft Azure Functions offers up to 10 mins6 and Google
Cloud Functions has a quota of 9 mins7.

Whilst all of them provide additional features or plans to cover
longer lived processes (a few examples include Azure Durable
Functions or the App Service plan and AWS Step Functions), it’s
important to remember those will have predefined limits too;
and might add to the list of compromises to be made, such as
increased latency, ineffective cost models (for example, AWS
Step Function is 125 times more expensive per invocation than
Lambda8) and some of the general drawbacks arising when using
complementary asynchronous patterns.

Generally, the promises of serverless architectures will materialise
most when applied to volatile, short-lived process areas such as
IoT & analytics, chat bots, real-time processing and ETL operations.

INNOVATION & TIME TO MARKET

EXECUTION TIME

https://customers.microsoft.com/en-gb/story/quest
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://cloud.google.com/functions/quotas
https://serverless.zone/faas-is-stateless-and-aws-step-functions-provides-state-as-a-service-2499d4a6e412

WHOSE SERVER IS IT ANYWAY? / 5

Making the leap towards a serverless architecture undoubtedly provides many benefits, not only from a technology viewpoint,
but also in terms of financial and operational factors, potential time to market improvements and the ability for your teams
to focus more on innovative functionality than infrastructural behaviours and capability. This is an attractive proposition,
especially given that the pattern is still in its relative infancy.

It’s important to remember though that individual, practical requirements should drive all architectural decisions, instead of
current trends. Consider your resource consumption patterns, latency and performance targets, workload types, monitoring
maturity, security model and the organisation’s strategic needs. If applied thoughtfully and in the right context, serverless
could indeed prove that less is more.

WHAT NEXT?

Probably a topic on its own, security is an important factor to consider in any distributed solution architecture but there are
some specific concerns to focus on when deploying a serverless architecture. Read about some security concerns you need
to take into account, and suggestions on mitigating these:

SECURITY

Denial of service attacks can become prevalent, which can in turn lead to financial implications where functions scale to
meet the false demand generated by such an attack. Any susceptible endpoints should therefore be protected and monitored
continuously. The big FaaS providers all offer potential solutions which will, in part, help mitigate such issues - see GCP Cloud
Armor, Azure DDoS Protection, Amazon Shield.

A general principle should be to limit the amount of work a single function performs. This not only achieves good application
software design, but it is also likely to reduce the complexity of the security rights required to perform the action in question.
This approach in conjunction with the principle of Least Privilege, will help ensure that your function is not given undue access.

In a distributed architecture with multiple endpoints, it is important to employ a consistent and robust authentication and
authorisation mechanism which is passed, or used, through the whole chain of events. Without such an approach it is easy to
fall into the trap of assumed privileges, when a system to system call is assumed to be authorised.

FINANCIAL IMPLICATIONS

STRICT FUNCTION BOUNDARIES

COMPLEX AUTHENTICATION CHAINS

AUTHORS
Beatrice Porcescu, Senior Consultant, Solution Architect
Dave Cecil, Managing Principal, Solution Architect

CONTACT
Senol Mehmet, Partner
senol.mehmet@capco.com

Rob Deakin, Partner
rob.deakin@capco.com

ABOUT CAPCO
Capco is a global technology and management consultancy dedicated to the financial services

industry. Our professionals combine innovative thinking with unrivalled industry knowledge to

offer our clients consulting expertise, complex technology and package integration, transformation

delivery, and managed services, to move their organizations forward. Through our collaborative

and efficient approach, we help our clients successfully innovate, increase revenue, manage risk

and regulatory change, reduce costs, and enhance controls. We specialize primarily in banking,

capital markets, wealth and investment management, and finance, risk & compliance. We also

have an energy consulting practice. We serve our clients from offices in leading financial centers

across the Americas, Europe, and Asia Pacific.

To learn more, visit our web site at www.capco.com, or follow us on Twitter, Facebook,

YouTube, LinkedIn and Instagram.

© 2019 The Capital Markets Company. Capco Confidential. All rights reserved.

WORLDWIDE OFFICES
APAC
Bangalore
Bangkok
Hong Kong
Kuala Lumpur
Pune
Singapore

EUROPE
Bratislava
Brussels
Dusseldorf
Edinburgh
Frankfurt
Geneva
London
Paris
Stockholm
Vienna
Warsaw
Zurich

NORTH
AMERICA
Charlotte
Chicago
Dallas
Houston
New York
Orlando
Toronto
Washington, DC

SOUTH
AMERICA
São Paulo

WWW.CAPCO.COM

mailto:senol.mehmet%40capco.com?subject=
mailto:rob.deakin%40capco.com?subject=

